Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27976, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510058

RESUMO

Perimenopausal syndrome (PMS) encompasses neuropsychiatric symptoms, such as hot flashes and depression, which are associated with alterations in the 5-HTergic neural pathway in the brain. However, the specific changes and mechanisms underlying these alterations remain unclear. In this study, ovariectomized mice were used to successfully establish a perimenopause model, and the changes in the expression of 5-HT and its receptors (5-HT1AR and 5-HT2AR) across 72 brain regions in these ovariectomized mice were assessed by immunohistochemistry. Although both 5-HT and 5-HT1AR were widely expressed throughout the brain, only a limited number of regions expressed 5-HT2AR. Notably, decreased expression of 5-HT was observed across almost all brain regions in the ovariectomy (OVX) group compared with the Sham group. Altered expression of both receptors was found within areas related to hot flashes (the preoptic area) or mood disorders (the amygdala). Additionally, reduced oestrogen receptor (ER)α/ß expression was detected in cells in the raphe nucleus (RN), an area known to regulate body temperature. Results showed that ERα/ß positively regulate the transcriptional activity of the enzymes TPH2/MAOA, which are involved in serotonin metabolism during perimenopause. This study revealed the changes in 5-HT neuropathways (5-HT, 5-HT1AR and 5-HT2AR) in perimenopausal mice, mainly in brain regions related to regulation of the body temperature, mood, sleep and memory. This study clarified that the expression of oestrogen receptor decreased in perimenopause, which regulated the transcription levels of TPH2 and MAOA, and ultimately led to the reduction of 5-HT content, providing a new target for clinical diagnosis and treatment of perimenopausal diseases.

2.
Ann Anat ; 250: 152132, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454827

RESUMO

BACKGROUND: Decreased estrogen levels can cause abnormal thermosensitivity of the preoptic area (POA) in the hypothalamus during menopause, which may cause hot flashes. Thermosensitive transient receptors (ThermoTRPs) affect the thermosensitivity of neurons. It is worth exploring whether ThermoTRPs change under low estrogen state and participate in the abnormal thermoregulation of POA. METHODS: Adult female Sprague-Dawley rats were randomly divided into sham operation (SHAM), ovariectomy (OVX) and estrogen treatment after ovariectomy (OVX+E) groups. Under 10 â„ƒ, 18 â„ƒ, 25 â„ƒ, 37 â„ƒ and 45 â„ƒ incubations, their skin temperature was monitored and the expression of TRPA1, TRPM8, TRPM2, and TRPV1 in POA were investigated. RESULTS: The skin temperature of ovariectomized rats changed faster and more dramatically under different incubation temperatures. The results at mRNA level show that only the expression of TRPM2 decreased in POA of OVX group compared with the other two groups at 25 â„ƒ, TRPA1 expression in POA of the three groups increased at 10 â„ƒ, TRPM8 increased at 10 â„ƒ and 18 â„ƒ, TRPV1 increased at 10 â„ƒ and 45 â„ƒ, while the expression of TRPM2 decreased at 10 â„ƒ and 18 â„ƒ and increased at 37 â„ƒ and 45 â„ƒ. In all these cases, the magnitudes of the changes were less in the OVX group relative to the other two groups. The further immunohistochemical and Western blot results of TRPM2 and the activated TRPM2 positive cells labeled by c-Fos were consistent with the results of mRNA level. CONCLUSIONS: The expression and thermosensitivity of TRPM2 in POA changed greatly under different incubation temperatures, but the changes in ovariectomized rats were less. This may be the key factor triggering thermoregulation dysfunction under low estrogen and may cause hot flashes.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Ratos , Feminino , Animais , Humanos , Área Pré-Óptica/metabolismo , Fogachos , Ratos Sprague-Dawley , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Estradiol , Hipotálamo/metabolismo , Menopausa , Estrogênios , Regulação da Temperatura Corporal , RNA Mensageiro/metabolismo , Ovariectomia
3.
Polymers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050244

RESUMO

Bonding is one of the main forms of composite bonding. In order to investigate the effect of low-temperature plasma surface treatment on the bonding properties of carbon fiber-reinforced epoxy resin composites (CF/EP), a single-lap joint of CF/EP was prepared. The surface of the CF/EP was treated with atmospheric pressure "low-temperature plasma spray" equipment, and the tensile shear strength, surface morphology, surface contact angle and surface chemical composition of the CF/EP before and after plasma treatment were characterized. Finally, the samples were treated with traditional sandblasting, compared and analyzed. The results show that the effect of low-temperature plasma surface treatment on CF/EP joints is better than that of traditional sandblasting treatment. After low-temperature plasma surface treatment, the tensile shear strength of the CF/EP single-lap joint increased by 119.59% at most, and the failure form of the joint changed from untreated interface failure to mixed failure dominated by cohesion failure. Plasma can etch the surface of composite materials, the mechanical interlock between the carbon fiber and glue is enhanced and the bonding performance of the composite is improved. In addition, after low-temperature plasma surface treatment, the introduction of a large number of oxygen-containing active groups such as C-O and C=O can increase the surface free energy, reduce the contact angle and improve the surface activity and wettability of the composites. However, too long a treatment time will lead to excessive plasma etching of carbon fibers, thus weakening the active effect of the oxygen-containing active groups on the surface of the composites, and the surface wettability is no longer improved, but the adhesive properties of CF/EP are reduced. This paper plays a guiding role in the bonding technology of composite materials.

4.
Neural Regen Res ; 18(3): 485-491, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018151

RESUMO

Recent studies have proposed three lymphatic drainage systems in the brain, that is, the glymphatic system, the intramural periarterial drainage pathway, and meningeal lymphatic vessels, whose roles in various neurological diseases have been widely explored. The glymphatic system is a fluid drainage and waste clearance pathway that utilizes perivascular space and aquaporin-4 protein located in the astrocyte endfeet to provide a space for exchange of cerebrospinal fluid and interstitial fluid. The intramural periarterial drainage pathway drives the flow of interstitial fluid through the capillary basement membrane and the arterial tunica media. Meningeal lymphatic vessels within the dura mater are involved in the removal of cerebral macromolecules and immune responses. After ischemic stroke, impairment of these systems could lead to cerebral edema, accumulation of toxic factors, and activation of neuroinflammation, while restoration of their normal functions can improve neurological outcomes. In this review, we summarize the basic concepts of these drainage systems, including drainage routes, physiological functions, regulatory mechanisms, and detection technologies. We also focus on the roles of lymphatic drainage systems in brain injury after ischemic stroke, as well as recent advances in therapeutic strategies targeting these drainage systems. These findings provide information for potential novel strategies for treatment of stroke.

6.
Adv Sci (Weinh) ; 10(5): e2205173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529950

RESUMO

The RIIß subunit of  cAMP-dependent protein kinase A (PKA) is expressed in the brain and adipose tissue. RIIß-knockout mice show leanness and increased UCP1 in brown adipose tissue. The authors have previously reported that RIIß reexpression in hypothalamic GABAergic neurons rescues the leanness. However, whether white adipose tissue (WAT) browning contributes to the leanness and whether RIIß-PKA in these neurons governs WAT browning are unknown. Here, this work reports that RIIß-KO mice exhibit a robust WAT browning. RIIß reexpression in dorsal median hypothalamic GABAergic neurons (DMH GABAergic neurons) abrogates WAT browning. Single-cell sequencing, transcriptome sequencing, and electrophysiological studies show increased GABAergic activity in DMH GABAergic neurons of RIIß-KO mice. Activation of DMH GABAergic neurons or inhibition of PKA in these neurons elicits WAT browning and thus lowers body weight. These findings reveal that RIIß-PKA in DMH GABAergic neurons regulates WAT browning. Targeting RIIß-PKA in DMH GABAergic neurons may offer a clinically useful way to promote WAT browning for treating obesity and other metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico , Hipotálamo , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios GABAérgicos/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Magreza/metabolismo
7.
Acta Neuropathol Commun ; 10(1): 187, 2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529767

RESUMO

Interstitial fluid (ISF) from brain drains along the basement membranes of capillaries and arteries as Intramural Periarterial Drainage (IPAD); failure of IPAD results in cerebral amyloid angiopathy (CAA). In this study, we test the hypothesis that IPAD fails after subarachnoid haemorrhage (SAH). The rat SAH model was established using endovascular perforation method. Fluorescence dyes with various molecular weights were injected into cisterna magna of rats, and the pattern of IPAD after SAH was detected using immunofluorescence staining, two-photon fluorescent microscope, transmission electron microscope and magnetic resonance imaging tracking techniques. Our results showed that fluorescence dyes entered the brain along a periarterial compartment and were cleared from brain along the basement membranes of the capillaries, with different patterns based on individual molecular weights. After SAH, there was significant impairment in the IPAD system: marked expansion of perivascular spaces, and ISF clearance rate was significantly decreased, associated with the apoptosis of endothelial cells, activation of astrocytes, over-expression of matrix metalloproteinase 9 and loss of collagen type IV. In conclusion, experimental SAH leads to a failure of IPAD, clinically significant for long term complications such as CAA, following SAH.


Assuntos
Angiopatia Amiloide Cerebral , Hemorragia Subaracnóidea , Animais , Ratos , Células Endoteliais/patologia , Angiopatia Amiloide Cerebral/patologia , Drenagem , Corantes
8.
Front Aging Neurosci ; 14: 993955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313017

RESUMO

During menopause, when estrogen levels are low, abnormalities in the hypothalamic preoptic area (POA) of the thermoregulatory center can cause hot flashes. However, the involved neural population has not been identified. Proteomics showed that under low estrogen, differentially expressed proteins in the hypothalamus were associated with glutamatergic and GABAergic synapses. RNAscope, Western blotting and qRT-PCR indicated that the number of glutamatergic neurons in the POA was decreased, while the number of GABAergic neurons was increased. Chemogenetics showed that the rat body temperature decreased slowly after glutamatergic neurons were activated and increased quickly after glutamatergic neurons were inhibited, while it increased quickly after GABAergic neurons were activated and decreased slowly after GABAergic neurons were inhibited. RNAscope, immunofluorescence, Western blotting and qRT-PCR further showed that glutamate decarboxylase (GAD) 1 expression in the POA was increased, while GAD2 expression in the POA was decreased; that thermosensitive transient receptor potential protein (ThermoTRP) M (TRPM) 2 expression in glutamatergic neurons was decreased, while TRPM8 expression in GABAergic neurons was increased; and that estrogen receptor (ER) α and ß expression in the POA was decreased, and ERα and ERß expressed in both glutamatergic and GABAergic neurons. Estrogen therapy corrected these abnormalities. In addition, CUT&Tag and Western blot after injection of agonists and inhibitors of ERs showed that ERα and ERß were both transcription factors in glutamatergic and GABAergic synapses. Mechanistically, during menopause, estrogen may regulate the transcription and expression of GADs and ThermoTRPs through ERs, impacting the number and function of glutamatergic and GABAergic neurons, resulting in unbalanced heat dissipation and production in the POA and ultimately triggering hot flashes.

9.
Neuro Endocrinol Lett ; 43(2): 88-98, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933616

RESUMO

OBJECTIVE: To investigate the effects of estrogen on the threshold and temperature of orofacial pain and explore the influence on the function of glutamate and GABA neurons in the orofacial pain temperature perception pathway by observing the expression of vesicular glutamate transporter 2 (Vglut2) and vesicular GABA transporter 1 (Vgat1). METHODS: A total of 24 adult female Sprague-Dawley rats were divided into three groups: sham operation (SHAM), ovariectomized (OVX) and ovariectomized plus estrogen intervention (OVX+E) (n = 8 per group). The threshold of mechanical pain of the orofacial region was assessed with von Frey filaments, and the temperature of the rat orofacial region was monitored by infrared thermography. Changes in the expression of Vglut2 and Vgat1 in glutamatergic and GABAergic neurons in the trigeminal ganglion (TG), spinal trigeminal nucleus (Sp5C), lateral parabrachial nucleus (LPB) and ventral posteromedial nucleus of the thalamus (VPM) were assessed by immunostaining and Western blotting. RESULTS: Under low-estrogen conditions, the mechanical pain threshold of the orofacial region of rats decreased significantly, and the temperature of the orofacial region increased significantly. The expression of Vglut2 and Vgat1 in the TG and Sp5C showed a downward trend, and the decline in Vgat1 was greater than that in Vglut2. Conversely, both proteins were upregulated in the LPB and VPM, and the magnitude of the changes in Vglut2 was greater than that in Vgat1. Estrogen therapy reversed these changes. CONCLUSION: Under low-estrogen conditions, the proportion of glutamate and GABA neurons in the orofacial pain and temperature sensation pathway changes, which leads to the imbalance of neurotransmission function and the enhancement of excitatory transmission of these two kinds of neurons and finally leads to a decrease in the orofacial pain threshold and an increase in temperature.


Assuntos
Dor Facial , Sensação , Animais , Feminino , Ratos , Estrogênios/farmacologia , Glutamatos , Ratos Sprague-Dawley , Temperatura , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
10.
Ann Anat ; 241: 151886, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35032566

RESUMO

BACKGROUND: Menopausal symptoms can affect the physical and mental health of females and are often related to abnormal function of the hypothalamus. In this study, we evaluated changes in the hypothalamus transcriptome in ovariectomized mice to identify key mRNAs, and systematically elucidated the possible molecular mechanisms underlying the menopausal syndrome to provide a theoretical basis for clinical diagnosis and treatment. METHODS: Forty-six adult female C57BL/6 J mice were randomly divided into SHAM and OVX groups, 23 mice per group. Eight weeks after the procedure, differentially expressed genes (DEGs) in the hypothalamus were identified through RNA-sequencing. DEGs were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses. Key DEGs were then evaluated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical staining. RESULTS: Compared with SHAM group, 7295 genes were upregulated, and 8979 genes were downregulated in the hypothalamus of OVX mice with a fold change of 1.5 (log2 fold change ≥0.585). GO and KEGG analyses suggested these key genes were involved in thermoregulation, food intake, glucose and lipid metabolism, cardiovascular regulation, biological rhythm, and endocrine regulation. CONCLUSIONS: Differential expression of genes in the hypothalamus of OVX mice involved in thermoregulation, eating, sleeping, homeostasis, and endocrine regulation 8 weeks after ovariectomy suggest potential roles in the pathogenesis of climacteric syndrome.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Feminino , Hipotálamo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA
11.
Diabetes ; 71(2): 249-263, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732538

RESUMO

The increasing prevalence of obesity has resulted in demands for the development of new effective strategies for obesity treatment. Withaferin A (WA) shows a great potential for prevention of obesity by sensitizing leptin signaling in the hypothalamus. However, the mechanism underlying the weight- and adiposity-reducing effects of WA remains to be elucidated. In this study, we report that WA treatment induced white adipose tissue (WAT) browning, elevated energy expenditure, decreased respiratory exchange ratio, and prevented high-fat diet-induced obesity. The sympathetic chemical denervation dampened the WAT browning and also impeded the reduction of adiposity in WA-treated mice. WA markedly upregulated the levels of Prdm16 and FATP1 (Slc27a1) in the inguinal WAT (iWAT), and this was blocked by sympathetic denervation. Prdm16 or FATP1 knockdown in iWAT abrogated the WAT browning-inducing effects of WA and restored the weight gain and adiposity in WA-treated mice. Together, these findings suggest that WA induces WAT browning through the sympathetic nerve-adipose axis, and the adipocytic Prdm16-FATP1 pathway mediates the promotive effects of WA on white adipose browning.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Obesidade/prevenção & controle , Vitanolídeos/farmacologia , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/inervação , Tecido Adiposo Branco/fisiologia , Animais , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Neuroendocrinology ; 112(7): 649-665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34592740

RESUMO

INTRODUCTION: Menopausal hot flashes are related to hypothalamic preoptic area (POA) dysfunction. Thermosensitive transient receptor potential channels (ThermoTRPs) are involved in temperature sensing and regulation of thermosensitive neurons (TSNs) in the POA. Whether ThermoTRP-TSNs in the POA, particularly the non-noxious thermoreceptor, transient receptor potential melastatin 2 (TRPM2), are involved in the occurrence of hot flashes is still unclear. METHODS: Twenty wild-type and 50 Trpm2-Cre adult female mice were randomly divided into sham (SHAM) and ovariectomy (OVX) groups. In the POA, ERα, ERß, GPR30, TRPA1, TRPM8, TRPM2, and TRPV1 expression was detected by Western blot or/and quantitative real-time polymerase chain reaction and the number of TSNs expressing TRPM2 (TRPM2-TSNs) by immunofluorescence. Before and after TRPM2-TSN activation/inhibition, back (BST) and tail skin temperature (TST) and the proportion of glutamatergic and GABAergic neurons among TRPM2-TSNs were recorded. RESULTS: Compared with SHAM, the expression of ERα, ERß, TRPM2, and TRPM8 in the POA of the OVX group decreased, with a significantly larger change range for TRPM2 than TRPM8. In addition, the number of TRPM2-TSNs showing TRPA1, TRPM8, and TRPV1 expression in the OVX group decreased, and the proportion of glutamatergic and GABAergic neurons in TRPM2-TSNs decreased and increased, respectively. Meanwhile, BST and TST increased. After activating or inhibiting TRPM2-TSNs, the proportions of glutamatergic and GABAergic neurons in TRPM2-TSNs changed, along with the BST and TST. CONCLUSION: In menopause, the abnormal quantity and function of TRPM2-TSNs in the POA is key for the development of hot flashes, characterized by an imbalance in heat dissipation and production due to the corresponding imbalance in glutamatergic and GABAergic neurons.


Assuntos
Canais de Cátion TRPM , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Fogachos/metabolismo , Menopausa , Camundongos , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Canais de Cátion TRPM/metabolismo
14.
Redox Biol ; 47: 102134, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600334

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disorder that is characterized by motor symptoms as a result of a loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), accompanied by chronic neuroinflammation, oxidative stress, formation of α-synuclein aggregates. Celastrol, a potent anti-inflammatory and anti-oxidative pentacyclic triterpene, has emerged as a neuroprotective agent. However, the mechanisms by which celastrol is neuroprotective in PD remain elusive. Here we show that celastrol protects against dopamine neuron loss, mitigates neuroinflammation, and relieves motor deficits in MPTP-induced PD mouse model and AAV-mediated human α-synuclein overexpression PD model. Whole-genome deep sequencing analysis revealed that Nrf2, NLRP3 and caspase-1 in SNc may be associated with the neuroprotective actions of celastrol in PD. By using multiple genetically modified mice (Nrf2-KO, NLRP3-KO and Caspase-1-KO), we identified that celastrol inhibits NLRP3 inflammasome activation, relieves motor deficits and nigrostriatal dopaminergic degeneration through Nrf2-NLRP3-caspase-1 pathway. Taken together, these findings suggest that Nrf2-NLRP3-caspase-1 axis may serve as a key target of celastrol in PD treatment, and highlight the favorable properties of celastrol for neuroprotection, making celastrol as a promising disease-modifying agent for PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Caspase 1/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Triterpenos Pentacíclicos
15.
Rapid Commun Mass Spectrom ; 35(22): e9195, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34491599

RESUMO

RATIONALE: Pyrotinib is an irreversible EGFR/HER2 inhibitor that has shown antitumor activity and tolerance in the treatment of breast cancer. Studies focused on its metabolic pathways and major metabolites are insufficient. In the evaluation of drug safety and therapeutic use, metabolite characterization is critical. The metabolism of pyrotinib in vitro was studied utilizing rat, dog and human hepatocytes in this study. METHODS: Pyrotinib (10 µM) was incubated with hepatocytes in Williams' E medium. The metabolites were examined and profiled using ultrahigh-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry. The metabolite structures were deduced by comparing their precise molecular weights, fragment ions and retention times with those of the parent drug. RESULTS: A total of 16 metabolites, including 6 novel ones, were discovered and structurally described under the present conditions. Oxidation, demethylation, dehydrogenation, O-dealkylation and glutathione (GSH) conjugation were all involved in the metabolism of pyrotinib in hepatocytes. The most predominant metabolic route was identified as GSH conjugation (M5). CONCLUSIONS: This study generated valuable metabolite profiles of pyrotinib in several species, which will aid in the understanding of the drug's disposition in various species and in evaluating the contribution of metabolites to overall effectiveness and toxicity of pyrotinib.


Assuntos
Acrilamidas/química , Acrilamidas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Hepatócitos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cães , Hepatócitos/química , Humanos , Ratos , Espectrometria de Massas em Tandem/métodos
16.
Exp Gerontol ; 143: 111142, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130112

RESUMO

BACKGROUND: In this study, the ovariectomized rat model was used to explore the impact of menopause on rats' dorsal lingual epithelium; at the same time, the curative effects of Remifemin and estradiol were also observed. METHODS: 28 adult female Sprague-Dawley rats were divided into four groups randomly, including sham-operated group (SHAM), an ovariectomized group (OVX), an ovariectomized treated with estradiol (OVX + E), an ovariectomized treated with Remifemin (OVX + iCR). Variation and possible mechanisms were studied via morphology, immunohistochemistry and electron microscope. RESULTS: The results showed that the dorsal lingual epithelium became thinner significantly in the apex part in OVX group, as well as the levels of proliferating cell nuclear antigen (PCNA) and the epidermal growth factor (EGF) were lower than that in other three groups. However, they could reverse close to normal after estradiol and Remifemin treatment respectively. CONCLUSION: The thinning in the apex of dorsal lingual epithelium might be due to the reduced proliferation in the germinal layer led by the abating of estrogen level, instead of apoptosis. This might play an important role in the pathogenesis of the menopause female tongue burning sensation. Remifemin had certain curative effect on the dorsal lingual mucosa, but a little more inferior than estrogen.


Assuntos
Estradiol , Estrogênios , Animais , Cimicifuga , Epitélio , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Ovariectomia , Extratos Vegetais , Ratos , Ratos Sprague-Dawley , Língua
17.
Ann Anat ; 232: 151565, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32603826

RESUMO

BACKGROUND: Hot flashes (HF) caused by low estrogen in menopause result from changes in thermoregulatory processes in the hypothalamic preoptic area (POA). In the POA, transient receptor potential vanilloid 1 (TRPV1) participates in heat dissipation processes. Studies suggest that TRPV1 expression may be regulated by norepinephrine (NE)-activated α2-adrenergic receptors (α2-ADR) in the dorsal root ganglia. The goal of this study was to investigate the relationship between NE-regulated TRPV1 expression in the POA of ovariectomized rats and the development of HF. METHODS: Ninety female adult Sprague-Dawley rats were divided into three groups: SHAM, OVX and E2 (n = 30 per group). The numbers of TRPV1- and α2-ADR-positive cells and the expression of TRPV1 and α2-ADR in the POA of each group were determined using immunohistochemical staining after 4 weeks of estrogen treatment. Western blotting was used to detect the expression of TRPV1 and α2-ADR in the POA tissue, and NE content in the POA tissue was detected using high-performance liquid chromatography. In addition, the coexpression of TRPV1 and α2-ADR in POA neurons was investigated using immunofluorescent staining. RESULTS: In the POA of ovariectomized rats, the number of TRPV1-positive cells and TRPV1 expression increased while NE content decreased. Concomitantly, the number of α2-ADR-positive cells and α2-ADR expression decreased. Estrogen treatment reversed these changes in the POA of ovariectomized rats. In addition, we found that TRPV1 and α2-ADR were coexpressed in POA neurons. CONCLUSIONS: Under low-estrogen conditions, NE-activated α2-ADR regulated TRPV1 expression in the POA, and increased expression of TRPV1 may be an important factor for triggering HF.


Assuntos
Fogachos/etiologia , Norepinefrina/fisiologia , Área Pré-Óptica/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Estrogênios/administração & dosagem , Feminino , Imunofluorescência/métodos , Imuno-Histoquímica , Microscopia Confocal , Neurônios/metabolismo , Norepinefrina/análise , Ovariectomia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
18.
Lipids Health Dis ; 19(1): 95, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430006

RESUMO

BACKGROUND: The prevalence of hypertension in young women is lower than that in age-matched men while the prevalence of hypertension in women is significantly increased after the age of 50 (menopause) and is greater than that in men. It is already known that sphingosine-1-phosphate (S1P) and ceramide regulate vascular tone with opposing effects. This study aimed to explore the effects of ovariectomy and estrogen supplementation on the ceramide/S1P rheostat of the aorta in rats, and to explore a potential mechanism for perimenopausal hypertension and a brand-new target for menopausal hormone therapy to protect vessels. METHODS: In total, 30 female adult SD rats were randomly divided into three groups: The sham operation group (SHAM), ovariectomy group (OVX) and ovariectomy plus estrogen group (OVX + E). After 4 weeks of treatment, the blood pressure (BP) of the rats was monitored by a noninvasive system; the sphingolipid content (e.g., ceramide and S1P) was detected by liquid chromatography-mass spectrometry (LC-MS); the expression of the key enzymes involved in ceramide anabolism and catabolism was measured by real-time fluorescence quantitative polymerase chain reaction (qPCR); and the expression of key enzymes and proteins in the sphingosine kinase 1/2 (SphK1/2)-S1P-S1P receptor 1/2/3 (S1P1/2/3) signaling pathway was detected by qPCR and western blotting. RESULTS: In the OVX group compared with the SHAM group, the systolic BP (SBP), diastolic BP (DBP) and pulse pressure (PP) increased significantly, especially the SBP and PP (P < 0.001). For aortic ceramide metabolism, the mRNA level of key enzymes involved in anabolism and catabolism decreased in parallel 2-3 times, while the contents of total ceramide and certain long-chain subtypes increased significantly (P < 0.05). As for the S1P signaling pathway, SphK1/2, the key enzymes involved in S1P synthesis, decreased significantly, and the content of S1P decreased accordingly (P < 0.01). The S1P receptors showed various trends: S1P1 was significantly down-regulated, S1P2 was significantly up-regulated, and S1P3 showed no significant difference. No significant difference existed between the SHAM and OVX + E groups for most of the above parameters (P > 0.05). CONCLUSIONS: Ovariectomy resulted in the imbalance of the aortic ceramide/S1P rheostat in rats, which may be a potential mechanism underlying the increase in SBP and PP among perimenopausal women. Besides, the ceramide/S1P rheostat may be a novel mechanism by which estrogen protects vessels.


Assuntos
Aorta/metabolismo , Ceramidas/metabolismo , Estrogênios/uso terapêutico , Hipertensão/prevenção & controle , Lisofosfolipídeos/metabolismo , Pós-Menopausa/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Aorta/química , Ceramidas/análise , Estrogênios/farmacologia , Feminino , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipertensão/metabolismo , Lisofosfolipídeos/análise , Modelos Animais , Ovariectomia , Ratos , Ratos Sprague-Dawley , Esfingosina/análise , Esfingosina/metabolismo
19.
Geriatr Gerontol Int ; 20(6): 621-628, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32237028

RESUMO

AIM: This study aimed to investigate changes in skin temperature in the main body regions of ovariectomized rats under different incubation temperatures to identify regions that are similar to hot flashes experienced by menopausal women. METHODS: A total of 96 adult female Sprague-Dawley rats were randomly divided into sham, ovariectomized and ovariectomized with estrogen treatment groups, with treatment lasting for 4 weeks. After 3 weeks of treatment, each group was randomly divided into five subgroups and placed in separate incubators set at 4, 15, 25, and 37°C. Changes in the skin temperature in seven main regions (head, neck, chest, abdomen, back, tail, and paws) for four time intervals (0-3 min, 3-5 min, 5-10 min and 10-15 min) were monitored using infrared thermography. RESULTS: All rats showed rapid changes in skin temperature followed by a gradual slowdown under different incubation temperatures. However, changes in ovariectomized rats were significantly different from that in normal rats, and changes on the back, tail and paws were more rapid and lasted longer. Estrogen treatment effectively controlled these abnormalities of ovariectomized rats. CONCLUSIONS: Temperature responses in the back, tail and paws in ovariectomized rats might be similar to the face, neck and upper chest in menopausal women, where the symptoms of hot flashes are most obvious, which suggests that the back, tail and paws could be regarded as the focus of research on hot flashes, and offer theoretical foundations for mechanisms behind the occurrence of hot flashes in specific regions. Geriatr Gerontol Int 2020; ••: ••-••.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Fogachos , Temperatura Cutânea/fisiologia , Animais , Estradiol/farmacologia , Feminino , Ovariectomia , Ratos , Ratos Sprague-Dawley
20.
Biomed Chromatogr ; 34(3): e4791, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31899538

RESUMO

The aim of the present study was to develop a liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the determination of olaparib in rat plasma. The plasma samples were processed using one-step protein precipitation with acetonitrile and then separated on Waters Acquity BEH C18 column (50 × 2.1 mm, particle size 1.7 µm) using water containing 0.1% formic acid and acetonitrile as mobile phase with optimized gradient elution. Mass spectrometric detection was carried out by selective reaction monitoring mode via positive ESI mode with precursor-to-product transitions of m/z 435.3 > 367.1 and m/z 443.1 > 375.2 for olaparib and 2 H8 -olaparib (internal standard). The method was linear over the concentration range 0.1-2000 ng/ml with correlation coefficient >0.9987. The lower limit of quantitation was 0.1 ng/ml. The method showed excellent accuracy and precision, negligible matrix effect and high extraction recovery. The validated method was subsequently utilized to determine the concentration of olaparib in rat plasma and further applied to the pharmacokinetic study of olaparib in rat plasma. Our results demonstrated that olaparib showed gender-dependent pharmacokinetics in rats. Compared with that in males, olaparib showed high plasma exposure, long half-life, low clearance and high bioavailability in females.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ftalazinas/sangue , Ftalazinas/farmacocinética , Piperazinas/sangue , Piperazinas/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Feminino , Modelos Lineares , Masculino , Ftalazinas/química , Piperazinas/química , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores Sexuais , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...